Search-based Local Blackbox Deobfuscation: Understand, Improve and Mitigate

Grégoire Menguy - CEA LIST
Sébastien Bardin - CEA LIST
Richard Bonichon - TWEAG I/O
Cauim de Souza Lima - CEA LIST

Speaker

Grégoire MENGUY

PhD Student at CEA LIST
BINSEC Team (https://binsec.github.io/)
in https://www.linkedin.com/in/gregoire-menguy/
@ @grmenguy

Obfuscation

Obfuscation

Deobfuscation

Deobfuscation

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis?

SEBASTIAN SCHRITTWIESER, St. Pölten University of Applied Sciences, Austria STEFAN KATZENBEISSER, Technische Universität Darmstadt, Germany JOHANNES KINDER, Royal Holloway, University of London, United Kingdom GEORG MERZDOVNIK and EDGAR WEIPPL, SBA Research, Vienna, Austria

A Generic Approach to Automatic Deobfuscation of Executable Code

Babak Yadegari
Brian Johannesmeyer
Benjamin Whitely
Saumya Debray
Department of Computer Science
The University of Arizona
Tucson, AZ 85721
\{babaky, bjohannesmeyer, whitely, debray\}@cs.arizona.edu

Symbolic deobfuscation:

from virtualized code back to the original*

Jonathan Salwan ${ }^{1}$, Sébastien Bardin ${ }^{2}$, and Marie-Laure Potet ${ }^{3}$

Backward-Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes*
Sébastien Bardin
91191 Gif-Sur-Yvette, France sebastien.bardint@cea.fr

Jean-Yves Marion Université de Lorraine CNRS and Inria, LORIA, France jean-yves.marion@loria.fr

Deobfuscation

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis?

Backward-Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes*

Babak Yadegari
Brian Johannesı

Whitebox deobfuscation is highly efficient
o the original*

Whitebox Deobfuscation

But efficient countermeasures

Information Hiding in Software with Mixed
Boolean-Arithmetic Transforms

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson
Cloakware Inc., USA
\{yongxin.zhou, alec.main, yuan.gu, harold.johnson\}@cloakware.com

How to Kill Symbolic Deobfuscation for Free (or: Unleashing the Potential of Path-Oriented Protections)

Mathilde Ollivier CEA, LIST,
Paris-Saclay, France mathilde.ollivier2@cea.fr

Richard Bonichon CEA, LIST,
Paris-Saclay, France richard.bonichon@cea.fr

Sébastien Bardin CEA, LIST, Paris-Saclay, France sebastien.bardin@cea.fr

Jean-Yves Marion Université de Lorraine, CNRS, LORIA Nancy, France
Jean-Yves.Marion@loria.fr

Probabilistic Obfuscation through Covert Channels

Jon Stephens Babak Yadegari Christian Collberg Saumya Debray Carlos Scheidegger
Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA

Email: \{stephensj2, babaky, collberg, debray, cscheid)@cs.arizona.edu

New threat: Blackbox Deobfuscation

Syntia: Synthesizing the Semantics of Obfuscated Code
Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz, Ruhr-Universität Bochum
https://www.usenix.org/conference/usenixsecurity 17/technical-sessions/presentation/blazytko

This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16-18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Bypasses whitebox methods limitations

Open questions

Contributions

Propose missing formalization

Refine Syntia experiments: new strengths and weaknesses

Show and explain why MCTS is not appropriate

Mitigate

S-metaheuristics > MCTS
Implement our approach:
Xyntia

Evaluation of Xyntia

Propose 2 protections

Evaluate them against Xyntia and Syntia

The talk in a nutshell

I. Blackbox deobfuscation: what's that?

II. Deepen understanding
III. Improve state-of-the art IV. Mitigate

Blackbox deobfuscation : what's that ?

Blackbox deobfuscation

1) Sample

$$
\begin{aligned}
& (t=1, T=2) \\
& (t=2, T=5) \\
& (t=0, T=6)
\end{aligned}
$$

-1
-3
-6
\cdot

2) Learn

$$
\begin{aligned}
& (\mathrm{t}=1, \mathrm{~T}=2) \rightarrow-1 \\
& (\mathrm{t}=2, \mathrm{~T}=5) \rightarrow-3 \\
& (\mathrm{t}=0, \mathrm{~T}=6) \rightarrow-6
\end{aligned}
$$

$t-T$

Learning engine

$$
\begin{aligned}
& U+(T-1) \quad t+T \quad t-U \\
& U \times U \quad(t-T) \times(T-1)
\end{aligned}
$$

Expression Grammar

$$
\begin{aligned}
U:= & U+U|U-U| U * U \ldots \\
& |t| T \mid 1
\end{aligned}
$$

Why blackbox?

Given a language L and an expression " e " in L

Syntactic complexity

Size of the the expression "e"
Size of the smallest expression in L equivalent to "e"

Example

$t-T$ is syntactically simpler than $(t \vee-2 T) \times 2-(t \oplus-2 T)+T$ but they share the same semantic complexity (being equivalent)

Why blackbox ?

Given a language L and an expression " e " in L

Syntactic complexity

Size of the the expression "e"

Size of the smallest expression in L equivalent to "e"

Example

$t-T$ is syntactically simpler than $(t \vee-2 T) \times 2-(t \oplus-2 T)+T$ but they share the same semantic complexity (being equivalent)

Obfuscation increase syntactic complexity
\rightarrow No impact on blackbox methods

Understand

Zoom on SoA: Syntia

- Dig into Syntia and deepen its evaluation:
- RQ1: stability of Syntia
- RQ2: efficiency of Syntia
- RQ3: Impact of operators set

Syntia: new results

Correctness

Syntia: new results

Quality

Correctness

Robustness

Experimental design

B1 (Syntia)

- 500 expressions
- Use up to 3 inputs
- redundancy
- Unbalanced w.r.t. type

B2 (ours)

- 1110 expressions
- Use 2-6 inputs
- No redundancy
- Balanced w.r.t. type

	Type					\# Inputs				
	Bool.	Arith.	MBA		2	3	4	5	6	
\#Expr.	370	370	370		150	600	180	90	90	

Table 1: Distribution of samples in benchmark B2

Evaluation of Syntia

B1 (Syntia)

- With a 60 s/expr. timeout : 75\% of success rate
- With a $1 \mathrm{~h} /$ expr. timeout : 88.2% of success rate
- With a 12 h/expr. timeout : 97.6 \% of success rate

B2 (Ours)

Table 2: Syntia depending on the timeout per expression (B2)

	1 s	10s	60s	600 s
Succ. Rate	16.5\%	25.6\%	34.5\%	42.3\%
Equiv. Range	16.3\%	25.1-25.3\%	33.7-34.0\%	41.4-41.6\%
Mean Qual	0.35	0.49	0.59	0.67

Why ?

$$
(U+U \xrightarrow[U-U]{\Delta+U-U}
$$

入 (Observed Samples:

$$
\begin{array}{ll|l|}
(\mathrm{t}=1, \mathrm{~T}=2) & \rightarrow & -1 \\
(\mathrm{t}=10, \mathrm{~T}=0) & \rightarrow & \mathbf{1 0} \\
(\mathrm{t}=10, \mathrm{~T}=5) & \mathbf{5} &
\end{array}
$$

Why ?

$$
\begin{array}{cc}
U+U \quad U-U & T
\end{array} \stackrel{t}{t}
$$

Δ

$$
\begin{aligned}
& \text { (Observed Samples: } \\
& \begin{array}{ll|l}
(\mathrm{t}=1, \mathrm{~T}=2) & \rightarrow & \mathbf{- 1} \\
(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow & \mathbf{1 0} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow \\
5
\end{array},
\end{aligned}
$$

Why ?

$$
\begin{array}{cc}
5+T-T & U+U \quad U-U
\end{array}
$$

1 Observed Samples:

$$
\begin{array}{ll|}
(\mathrm{t}=1, \mathrm{~T}=2) & -\mathbf{1} \\
(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow & \mathbf{1 0} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow & 5
\end{array}
$$

Synthesized Samples:

$$
\begin{aligned}
& (\mathrm{t}=1, \mathrm{~T}=2) \rightarrow \mathbf{0} \\
& \begin{array}{l}
(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow-\mathbf{- 1 1} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow-6
\end{array} \\
& (\mathrm{t}=10, \mathrm{~T}=5) \rightarrow-6
\end{aligned}
$$

Why ?

(C) $t-T$

$$
\begin{gathered}
U+U+U-U \\
(U+U)-U \frac{(U-U)-U}{2} \\
(T-t)-1
\end{gathered}
$$

入 Observed Samples:

$(\mathrm{t}=1, \mathrm{~T}=2)$	$-\mathbf{1}$
$(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow$	$\mathbf{1 0}$
$(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow$	5

Synthesized Samples:

$$
\begin{array}{ll|c}
(\mathrm{t}=1, \mathrm{~T}=2) & \rightarrow \\
(\mathrm{t}=10, \mathrm{~T}=0) & \rightarrow \\
(\mathrm{-11} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow-\mathbf{- 6}
\end{array}
$$

Why ?

$$
\begin{array}{ccc}
U+U \rightarrow U-U & T & t \\
(U+U)-U & (U-U)-U & \vec{U}-t
\end{array}
$$

Δ

$$
\left(\begin{array}{l}
\text { Observed Samples: } \\
(\mathrm{t}=1, \mathrm{~T}=2) \rightarrow \\
(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow \mathbf{- 1} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow \\
\mathbf{5}
\end{array}\right),
$$

Why ?

Δ

)

Why ?

$$
t-T
$$

$$
\begin{aligned}
& U \\
& U+U \quad U-U \quad{ }_{T} \quad{ }_{t}^{*} \\
& (U+\vec{U})-U \quad(U-\vec{U})-U \quad \vec{U}-T \quad \vec{U}-t \\
& \text { そ } \zeta \\
& t-T \quad 1-T
\end{aligned}
$$

Δ

$$
\left(\begin{array}{c}
\text { Observed Samples: } \\
(\mathrm{t}=1, \mathrm{~T}=2) \rightarrow \\
(\mathrm{t}=10, \mathrm{~T}=0) \rightarrow \mathbf{1 0} \\
(\mathrm{t}=10, \mathrm{~T}=5) \rightarrow \mathbf{5}
\end{array},\right.
$$

Why ?

$$
\text { (6) } t-T
$$

$$
\begin{aligned}
& \underset{U+U}{U-U} \\
& (U+U)-U \quad(U-\vec{U})-U \quad \underset{~-~}{U-T} \\
& 1-T \\
& \text { © } \\
& \text { Synthesized Samples: } \\
& \begin{array}{ll}
(t=1, T=2) & \rightarrow \\
(t=10, T=0) & \rightarrow \mathbf{- 1} \\
(t=10, T=5) & \rightarrow \\
& \mathbf{- 4}
\end{array}
\end{aligned}
$$

Why ?

Claim

- Search space is too unstable for partial node evaluation
- Estimation of non terminal expressions is misleading

Evidence $\mathbf{n}^{\circ} 1$: 2 simulations can lead to very distinct distances

Evidence n ${ }^{\circ} 2$: Syntia does not benefit from partial evaluation

Evidence n ${ }^{\circ}$ 3: Syntia behaves in practice almost as BFS

Evidence $\mathbf{n}^{\circ} 1$ and 2

Evidence $\mathbf{n}^{\circ} 2$

Number of expressions from exploitation steps?

B1 (Syntia)

20 / 376

Non terminal expressions

B2 (Ours)

34 / 341
Simulation leads to completely different results

Evidence nº3

- Config. of Syntia makes MCTS almost BFS

 Syntia is not guided \uparrow
 Over B2 Syntia and enum. MCTS reach similar results

Improve 回

Blackbox deobf., an optimization pb

Syntia sees blackbox deobfuscation as a single player game

We propose to see it as an optimization problem

Goal : find $\underset{\text { an expr. }}{s^{*}}$ s.t. $\underbrace{f}_{\Delta}\left(s^{*}\right) \leq f(s), \forall s \in S$

S-metaheuristics

- Solve optimization problems

S-metaheuristics

- Solve optimization problems

New prototype: Xyntia

) Xyntia

S-metaheuristics

Can choose between:
\rightarrow Hill Climbing
\rightarrow Simulated annealing
\rightarrow Metropolis Hasting
\rightarrow Iterated Local Search

MCTS

Xyntia vs Syntia

B1 (Syntia)

- $\mathbf{1 0 0}$ \% success rate in 1 s/expr.

B2 (Ours)

Xyntia vs Syntia

B1 (Syntia)

- 100 \% success rate in 1 s/expr.

B2 (Ours)

- - Stable
- Good quality results

Other experiments

- Xyntia against QSynth
- Xyntia against "compiler like simplifications"
- Xyntia against program synthesizer CVC4
- Xyntia against superoptimizer STOKE
- Use-cases:
- State-of-the-art protections
- VM-based obfuscation

What's next?

DOWHWORT1/

DHITSACMIM

Mitigate

Context : Virtualization

Proved to be sensitive to blackbox deobfuscation

Why VM-based obf. is vulnerable ?

- Handlers are too semantically simple:
\rightarrow e.g. $+,-, \times, \wedge, v$
- Obfuscation increase syntactic complexity \rightarrow Blackbox deobf. is not impacted

We need to move ...
From syntactic to semantic complexity

Semantically complex expressions

- Goal:

- Increase the semantic complexity of each handlers
- Keep a Turing complete set of handlers
- Example:

$$
\begin{array}{ccc}
& h_{0}= & (x+y)+-\left(\left(a-x^{2}\right)-(x y)\right) \\
+\quad & h_{1}=\left(a-x^{2}\right)-x y+(-(y-(a \wedge x)) \times(y \otimes x)) \\
+\quad h_{2} & = & (y-(a \wedge x)) \times(y \otimes x) \\
\hline & h= & x+y
\end{array}
$$

Merged handlers

- Goal:

- Increase semantic + sampling complexity

- Example:

$$
\begin{gathered}
h_{1}(x, y)=x+y \quad \text { and } \quad h_{2}(x, y)=x \wedge y \\
\rightarrow \quad h(x, y, c)=\text { if }(c=c s t) \text { then } h_{1}(x, y) \text { else } h_{2}(x, y)
\end{gathered}
$$

- Need to hide conditionals:

```
int32_t h(int32_t a, int32_t b, int32_t c) {
    // if (c == cst) then h1(a,b,c) else h2(a,b,c);
    int32_t res = c - cst ;
    int32_t s = res >> 31;
    res = (-((res ^ s) -s) >> 31) & 1;
    return h1(a, b, c)*(1 - res) + res*h2(a, b, c);
}
```


Semantically complex handlers: results

More results:

- Syntia with 12 h /exprs. $\rightarrow 1 / 15$ on BP1

Merged handlers: results

Figure 10: Merged handlers: Xyntia (timeout=60s)

More results:

- Syntia finds nothing for ≥ 2 nested ITE

Conclusion

MCTS is not appropriate for blackbox deobfuscation
\rightarrow Search space too unstable
\rightarrow Estimation of non terminal expressions pertinence is misleading

S-metaheuristics yields a significant improvement
\rightarrow More robust
\rightarrow Much Faster

Moving for syntactic to semantic complexity
$\rightarrow 2$ efficient methods to protect against blackbox deobfuscation

Thank you for your attention

